首页 > Java > Java GC之常见垃圾收集器

Java GC之常见垃圾收集器

上一篇文章简单写了JVM的常见垃圾回收算法,今天就让我们看看根据这些算法有哪些常见的垃圾收集器,他们有什么特点,然后根据自己的应用特点和要求组合出各个年代所使用的收集器。

gccollect

上图展示了JDK1.7Update14之后的HotSpot虚拟机的7种作用于不同分代的收集器,如果两个收集器之间存在连线,就说明它们可以搭配使用。虚拟机所处的区域,则表示它是属于新生代收集器还是老年代收集器

1. Serial收集器

Serial收集器是最基本、发展历史最悠久的收集器,在JDK 1.3.1之前是虚拟机新生代收集的唯一选择。见名知意它是一个单线程的收集器,“单线程”的意义并不仅仅说明它只会使用一个CPU或一条收集线程去完成垃圾收集工作,更重要的是在它进行垃圾收集时,必须暂停其他所有的工作线程,直到它收集结束,也就是传说中的Stop The World,简称STW。那么它是不是已经被淘汰的一个垃圾收集器呢,事实上并不是,由于与其他收集器的单线程比简单而高效,对于限定单个CPU的环境来说,Serial收集器由于没有线程交互的开销,专心做垃圾收集自然可以获得最高的单线程收集效率。所以Serial收集器是虚拟机运行在Client模式下的默认新生代收集器。它的运行示意图如下:

serial-serialold

2. ParNew收集器

ParNew收集器其实就是Serial收集器的多线程版本,是一个并行垃圾收集器,并行的含义是:多条垃圾收集线程并行工作,但此时用户线程仍然处于等待状态。除了使用多条线程进行垃圾收集之外,其余行为包括Serial收集器可用的所有控制参数、收集算法、Stop The World、对象分配规则、回收策略等都与Serial收集器完全一样,在实现上,这两种收集器也共用了相当多的代码。ParNew收集器是许多运行在Server模式下的虚拟机中首选的新生代收集器,还有一个和性能无关的但是很重要的原因:除了Serial收集器外,目前只有它能与CMS收集器配合工作。和Serial收集器相比,ParNew收集器在单CPU的环境中绝对不会有比Serial收集器更好的效果,甚至由于存在线程交互的开销,该收集器在通过超线程技术实现的两个CPU的环境中都不能百分之百地保证可以超越Serial收集器。然而,随着可以使用的CPU的数量的增加,它对于GC时系统资源的有效利用还是很有好处的。其运行示意图如下:

parnew-serialord

3. Parallel Scavenge收集器

Parallel Scavenge收集器是一个新生代收集器,它也是使用复制算法的收集器,又是并行的多线程收集器。那么他有什么应用场景呢?事实上Parallel Scavenge收集器的特点是它的关注点与其他收集器不同,其他收集器的关注点是尽可能地缩短垃圾收集时用户线程的停顿时间,而Parallel Scavenge收集器的目标则是达到一个可控制的吞吐量(Throughput),所以由于与吞吐量关系密切,Parallel Scavenge收集器也经常称为“吞吐量优先”收集器。所以它的应用场景体现在:停顿时间越短就越适合需要与用户交互的程序,良好的响应速度能提升用户体验,而高吞吐量则可以高效率地利用CPU时间,尽快完成程序的运算任务,主要适合在后台运算而不需要太多交互的任务。除此之外和ParNew收集器相比,它具有自适应调节策略。Parallel Scavenge收集器有一个参数-XX:+UseAdaptiveSizePolicy。当这个参数打开之后,就不需要手工指定新生代的大小、Eden与Survivor区的比例、晋升老年代对象年龄等细节参数了,虚拟机会根据当前系统的运行情况收集性能监控信息,动态调整这些参数以提供最合适的停顿时间或者最大的吞吐量,这种调节方式称为GC自适应的调节策略(GC Ergonomics),其运行示意图如下:

parallelscavenge-parallelold

4. Serial Old收集器

Serial Old是Serial收集器的老年代版本,它同样是一个单线程收集器,使用标记-整理算法。它的主要应用场景:1. 给Client模式下的虚拟机使用(还记得Client模式下新生代的默认垃圾收集器是啥吗?);2. 在Server模式下,那么它主要还有两大用途:一种用途是在JDK 1.5以及之前的版本中与Parallel Scavenge收集器搭配使用,另一种用途就是作为CMS收集器的后备预案,在并发收集发生Concurrent Mode Failure时使用。运行示意图见Serial垃圾收集器

5. Parallel Old收集器

Parallel Old是Parallel Scavenge收集器的老年代版本,使用多线程和“标记-整理”算法。在注重吞吐量以及CPU资源敏感的场合,都可以优先考虑Parallel Scavenge加Parallel Old收集器。这个收集器是在JDK 1.6中才开始提供的,在此之前,新生代的Parallel Scavenge收集器一直处于比较尴尬的状态。原因是,如果新生代选择了Parallel Scavenge收集器,老年代除了Serial Old收集器外别无选择(Parallel Scavenge收集器无法与CMS收集器配合工作)。由于老年代Serial Old收集器在服务端应用性能上的“拖累”,使用了Parallel Scavenge收集器也未必能在整体应用上获得吞吐量最大化的效果,由于单线程的老年代收集中无法充分利用服务器多CPU的处理能力,在老年代很大而且硬件比较高级的环境中,这种组合的吞吐量甚至还不一定有ParNew加CMS的组合“给力”。直到Parallel Old收集器出现后,“吞吐量优先”收集器终于有了比较名副其实的应用组合。运行示意图见Parallel Scavenge垃圾收集器

6. CMS收集器

在JDK 1.5时期,HotSpot推出了一款在强交互应用中几乎可认为有划时代意义的垃圾收集器——CMS收集器,这款收集器是HotSpot虚拟机中第一款真正意义上的并发收集器,它第一次实现了让垃圾收集线程与用户线程同时工作。并发的含义就是:指用户线程与垃圾收集线程同时执行(但不一定是并行的,可能会交替执行),用户程序在继续运行,而垃圾收集程序运行于另一个CPU上,他可不用同于并行,并行会有STW,并发几乎没有STW。CMS(Concurrent Mark Sweep)收集器是一种以获取最短回收停顿时间为目标的收集器。目前很大一部分的Java应用集中在互联网站或者B/S系统的服务端上,这类应用尤其重视服务的响应速度,希望系统停顿时间最短,以给用户带来较好的体验。CMS收集器就非常符合这类应用的需求。它的运行示意图如下:

cms

从图上可以看出,CMS收集器是基于“标记—清除”算法实现的,它的运作过程相对于前面几种收集器来说更复杂一些,整个过程分为4个步骤:

①. 初始标记(CMS initial mark)
初始标记仅仅只是标记一下GC Roots能直接关联到的对象,速度很快,需要“Stop The World”。

②. 并发标记(CMS concurrent mark)
并发标记阶段就是进行GC Roots Tracing的过程。

③. 重新标记(CMS remark)
重新标记阶段是为了修正并发标记期间因用户程序继续运作而导致标记产生变动的那一部分对象的标记记录,这个阶段的停顿时间一般会比初始标记阶段稍长一些,但远比并发标记的时间短,仍然需要“Stop The World”。

④. 并发清除(CMS concurrent sweep)
并发清除阶段会清除对象。

由于整个过程中耗时最长的并发标记和并发清除过程收集器线程都可以与用户线程一起工作,所以,从总体上来说,CMS收集器的内存回收过程是与用户线程一起并发执行的。CMS是一款优秀的收集器,它的主要优点在名字上已经体现出来了:并发收集、低停顿,但是他也有缺点:

①. CMS收集器对CPU资源非常敏感
其实,面向并发设计的程序都对CPU资源比较敏感。在并发阶段,它虽然不会导致用户线程停顿,但是会因为占用了一部分线程(或者说CPU资源)而导致应用程序变慢,总吞吐量会降低。
CMS默认启动的回收线程数是(CPU数量+3)/ 4,也就是当CPU在4个以上时,并发回收时垃圾收集线程不少于25%的CPU资源,并且随着CPU数量的增加而下降。但是当CPU不足4个(譬如2个)时,CMS对用户程序的影响就可能变得很大。

②. CMS收集器无法处理浮动垃圾
CMS收集器无法处理浮动垃圾,可能出现“Concurrent Mode Failure”失败而导致另一次Full GC的产生。
由于CMS并发清理阶段用户线程还在运行着,伴随程序运行自然就还会有新的垃圾不断产生,这一部分垃圾出现在标记过程之后,CMS无法在当次收集中处理掉它们,只好留待下一次GC时再清理掉。这一部分垃圾就称为“浮动垃圾”。
也是由于在垃圾收集阶段用户线程还需要运行,那也就还需要预留有足够的内存空间给用户线程使用,因此CMS收集器不能像其他收集器那样等到老年代几乎完全被填满了再进行收集,需要预留一部分空间提供并发收集时的程序运作使用。要是CMS运行期间预留的内存无法满足程序需要,就会出现一次“Concurrent Mode Failure”失败,这时虚拟机将启动后备预案:临时启用Serial Old收集器来重新进行老年代的垃圾收集,这样停顿时间就很长了。

③. CMS收集器会产生大量空间碎片
CMS是一款基于“标记—清除”算法实现的收集器,这意味着收集结束时会有大量空间碎片产生。
空间碎片过多时,将会给大对象分配带来很大麻烦,往往会出现老年代还有很大空间剩余,但是无法找到足够大的连续空间来分配当前对象,不得不提前触发一次Full GC。

需要说明的是:当你使用-XX:+UseConcMarkSweepGC启用CMS垃圾收集器之后,新生代默认使用的是ParNew收集器,当然也可以使用-XX:+UseParNewGC选项来强制使用它

7. G1收集器

G1(Garbage-First)是一款面向服务端应用的垃圾收集器。HotSpot开发团队赋予它的使命是未来可以替换掉JDK 1.5中发布的CMS收集器。与其他GC收集器相比,G1具备如下特点:

①. 并行与并发
G1能充分利用多CPU、多核环境下的硬件优势,使用多个CPU来缩短Stop-The-World停顿的时间,部分其他收集器原本需要停顿Java线程执行的GC动作,G1收集器仍然可以通过并发的方式让Java程序继续执行。

②. 分代收集
与其他收集器一样,分代概念在G1中依然得以保留。虽然G1可以不需要其他收集器配合就能独立管理整个GC堆,但它能够采用不同的方式去处理新创建的对象和已经存活了一段时间、熬过多次GC的旧对象以获取更好的收集效果。

③. 空间整合
与CMS的“标记—清理”算法不同,G1从整体来看是基于“标记—整理”算法实现的收集器,从局部(两个Region之间)上来看是基于“复制”算法实现的,但无论如何,这两种算法都意味着G1运作期间不会产生内存空间碎片,收集后能提供规整的可用内存。这种特性有利于程序长时间运行,分配大对象时不会因为无法找到连续内存空间而提前触发下一次GC。
④. 可预测的停顿

这是G1相对于CMS的另一大优势,降低停顿时间是G1和CMS共同的关注点,但G1除了追求低停顿外,还能建立可预测的停顿时间模型,能让使用者明确指定在一个长度为M毫秒的时间片段内,消耗在垃圾收集上的时间不得超过N毫秒。

最后说一下G1收集器的运作大致可划分为以下几个步骤:

①. 初始标记(Initial Marking)
初始标记阶段仅仅只是标记一下GC Roots能直接关联到的对象,并且修改TAMS(Next Top at Mark Start)的值,让下一阶段用户程序并发运行时,能在正确可用的Region中创建新对象,这阶段需要停顿线程,但耗时很短。

②. 并发标记(Concurrent Marking)
并发标记阶段是从GC Root开始对堆中对象进行可达性分析,找出存活的对象,这阶段耗时较长,但可与用户程序并发执行。

③. 最终标记(Final Marking)
最终标记阶段是为了修正在并发标记期间因用户程序继续运作而导致标记产生变动的那一部分标记记录,虚拟机将这段时间对象变化记录在线程Remembered Set Logs里面,最终标记阶段需要把Remembered Set Logs的数据合并到Remembered Set中,这阶段需要停顿线程,但是可并行执行。

④. 筛选回收(Live Data Counting and Evacuation)
筛选回收阶段首先对各个Region的回收价值和成本进行排序,根据用户所期望的GC停顿时间来制定回收计划,这个阶段其实也可以做到与用户程序一起并发执行,但是因为只回收一部分Region,时间是用户可控制的,而且停顿用户线程将大幅提高收集效率。

8. 总结

虽然我们是在对各个收集器进行比较,但并非为了挑选出一个最好的收集器。因为直到现在为止还没有最好的收集器出现,更加没有万能的收集器,所以我们选择的只是对具体应用最合适的收集器。这点不需要多加解释就能证明:如果有一种放之四海皆准、任何场景下都适用的完美收集器存在,那HotSpot虚拟机就没必要实现那么多不同的收集器了。

参考资料:周志明《深入理解Java虚拟机》第二版第三章
参考文章:http://www.jianshu.com/p/50d5c88b272d 说实话,这篇文章的作者比我总结的好多了

全文完,如果本文对您有所帮助,请花 1 秒钟帮忙点击一下广告,谢谢。

作 者: BridgeLi,https://www.bridgeli.cn
原文链接:http://www.bridgeli.cn/archives/342
版权声明:非特殊声明均为本站原创作品,转载时请注明作者和原文链接。
分类: Java 标签: , ,
  1. 本文目前尚无任何评论.

请输入正确的验证码